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Electric Double Layer Capacitors (EDLCs) 

•  EDLCs store energy: 
•  Electrochemically across the Electric Double Layer 

•  Rapidly 

•  Over 106 charging cycles 

•  EDLCs are used for: 
•  Large scale power regulation 

•  Storage of intermittent energy 

•  Wind, solar, tidal, etc. 

•  Energy recovery in repetitive processes 

•  Elevators, busses  
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Continuum theory does not work for EDLCs 

C
at

ho
de

 

A
no

de
 

€ 

˜ ∇ 2 ˜ ψ = ˜ λ D
−2 sinh( ˜ ψ )

•  Poisson-Boltzmann (PB) theory assumes point-sized ions in a mean-
field 
•  Breaks down in regimes of experimental interest, e.g. voltages above 25 mV 

•  Modified PB theories exist, but none that address transient behavior 
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•  Develop MD simulations to supplement continuum-level models that 
incorporate effects of actual EDL systems 
•  Large, solvated, and/or non-spherical ions 

•  Highly concentrated ionic fluids 

•  Porous or rough electrodes with nanoscale features 

Use LAMMPS to study EDL formation and structure 
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Model Details 
•  Ions are represented as charged 

Lennard-Jones particles 

•  Electrostatics are calculated using 
Particle-Particle-Particle-Mesh 
technique 

€ 

Fion∑ = FLJ + FCoulombic + FLangevin + FVoltage

•  Electrodes are 9/3 walls 

•  Langevin thermostat used to 
simulate an implicit solvent 

•  Impose a uniform electric field via 
FVoltage = qionE 
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Concentration profiles: 
Disagreement with PB at increased voltages 
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Applied 
Voltages: 

11.25 mV 

28.75 mV 
€ 

˜ z 

Applied 
Voltages: 

0 mV 

1.25 mV 
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•  Large increases in capacitance observed when 
pore size equals solvation shell 

•  Model ordered carbon electrodes by 
Chmelka (UCSB ChE) 

•    
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Future Work 

•  Find regime where the model and Poisson-Boltzmann theory agree 
•  Reduce the Bjerrum length relative to the screening length  

•  Introduce uncharged Lennard-Jones particles as an explicit solvent 
•  Introduce polarizable solvent models 

•  Increase volume fraction to model ionic liquids 

•  Modify electrode geometry to model pores 

Ti 
200 nm 


